\(\int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx\) [328]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 204 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx=-\frac {2 \left (a A b-2 a^2 B+b^2 B\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b^2 \left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 (A b-2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{b^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 a (A b-a B) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}} \]

[Out]

2*a*(A*b-B*a)*sin(d*x+c)/b/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1/2)-2*(A*a*b-2*B*a^2+B*b^2)*(cos(1/2*d*x+1/2*c)^2)^(
1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/2)/b^2/(a^2-
b^2)/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+2*(A*b-2*B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(
sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/b^2/d/(a+b*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.226, Rules used = {3047, 3100, 2831, 2742, 2740, 2734, 2732} \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx=\frac {2 a (A b-a B) \sin (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}-\frac {2 \left (-2 a^2 B+a A b+b^2 B\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b^2 d \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 (A b-2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{b^2 d \sqrt {a+b \cos (c+d x)}} \]

[In]

Int[(Cos[c + d*x]*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

(-2*(a*A*b - 2*a^2*B + b^2*B)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(b^2*(a^2 - b^2)
*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + (2*(A*b - 2*a*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*
x)/2, (2*b)/(a + b)])/(b^2*d*Sqrt[a + b*Cos[c + d*x]]) + (2*a*(A*b - a*B)*Sin[c + d*x])/(b*(a^2 - b^2)*d*Sqrt[
a + b*Cos[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2831

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {A \cos (c+d x)+B \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx \\ & = \frac {2 a (A b-a B) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}-\frac {2 \int \frac {\frac {1}{2} b (A b-a B)+\frac {1}{2} \left (a A b-2 a^2 B+b^2 B\right ) \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{b \left (a^2-b^2\right )} \\ & = \frac {2 a (A b-a B) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {(A b-2 a B) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx}{b^2}-\frac {\left (a A b-2 a^2 B+b^2 B\right ) \int \sqrt {a+b \cos (c+d x)} \, dx}{b^2 \left (a^2-b^2\right )} \\ & = \frac {2 a (A b-a B) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}-\frac {\left (\left (a A b-2 a^2 B+b^2 B\right ) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{b^2 \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left ((A b-2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{b^2 \sqrt {a+b \cos (c+d x)}} \\ & = -\frac {2 \left (a A b-2 a^2 B+b^2 B\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b^2 \left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 (A b-2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{b^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 a (A b-a B) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.90 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.83 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx=-\frac {2 \left (-\left ((a+b) \left (-a A b+2 a^2 B-b^2 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )\right )+\left (a^2-b^2\right ) (-A b+2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )+a b (-A b+a B) \sin (c+d x)\right )}{(a-b) b^2 (a+b) d \sqrt {a+b \cos (c+d x)}} \]

[In]

Integrate[(Cos[c + d*x]*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

(-2*(-((a + b)*(-(a*A*b) + 2*a^2*B - b^2*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticE[(c + d*x)/2, (2*b)/(a
 + b)]) + (a^2 - b^2)*(-(A*b) + 2*a*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)
] + a*b*(-(A*b) + a*B)*Sin[c + d*x]))/((a - b)*b^2*(a + b)*d*Sqrt[a + b*Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(518\) vs. \(2(252)=504\).

Time = 12.08 (sec) , antiderivative size = 519, normalized size of antiderivative = 2.54

method result size
default \(-\frac {\sqrt {-\left (-2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-a +b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\frac {2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a -b}+\frac {a +b}{a -b}}\, \left (A b F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )-2 B F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a +B E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a -B E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) b \right )}{b^{2} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +\left (a +b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}+\frac {2 a \left (A b -B a \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +\left (a +b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) \sqrt {-\frac {2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a -b}+\frac {a +b}{a -b}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a -E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) \sqrt {-\frac {2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a -b}+\frac {a +b}{a -b}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, b \right )}{b^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-a -b \right ) \left (a^{2}-b^{2}\right )}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b}\, d}\) \(519\)
parts \(\text {Expression too large to display}\) \(905\)

[In]

int(cos(d*x+c)*(A+B*cos(d*x+c))/(a+cos(d*x+c)*b)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/b^2/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2
*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(A*b*Ell
ipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-2*B*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a+B*Ellipti
cE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-B*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b)+2*a*(A*b-B*a
)/b^2/sin(1/2*d*x+1/2*c)^2/(2*b*sin(1/2*d*x+1/2*c)^2-a-b)/(a^2-b^2)*(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d
*x+1/2*c)^2)^(1/2)*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b+EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2
))*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a-EllipticE(cos(1/2*d*x+1/
2*c),(-2*b/(a-b))^(1/2))*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*b))/
sin(1/2*d*x+1/2*c)/(-2*b*sin(1/2*d*x+1/2*c)^2+a+b)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.15 (sec) , antiderivative size = 683, normalized size of antiderivative = 3.35 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx=-\frac {6 \, {\left (B a^{2} b^{2} - A a b^{3}\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sin \left (d x + c\right ) + {\left (\sqrt {2} {\left (-4 i \, B a^{3} b + 2 i \, A a^{2} b^{2} + 5 i \, B a b^{3} - 3 i \, A b^{4}\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-4 i \, B a^{4} + 2 i \, A a^{3} b + 5 i \, B a^{2} b^{2} - 3 i \, A a b^{3}\right )}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) + {\left (\sqrt {2} {\left (4 i \, B a^{3} b - 2 i \, A a^{2} b^{2} - 5 i \, B a b^{3} + 3 i \, A b^{4}\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (4 i \, B a^{4} - 2 i \, A a^{3} b - 5 i \, B a^{2} b^{2} + 3 i \, A a b^{3}\right )}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) - 3 \, {\left (\sqrt {2} {\left (2 i \, B a^{2} b^{2} - i \, A a b^{3} - i \, B b^{4}\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (2 i \, B a^{3} b - i \, A a^{2} b^{2} - i \, B a b^{3}\right )}\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) - 3 \, {\left (\sqrt {2} {\left (-2 i \, B a^{2} b^{2} + i \, A a b^{3} + i \, B b^{4}\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-2 i \, B a^{3} b + i \, A a^{2} b^{2} + i \, B a b^{3}\right )}\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right )}{3 \, {\left ({\left (a^{2} b^{4} - b^{6}\right )} d \cos \left (d x + c\right ) + {\left (a^{3} b^{3} - a b^{5}\right )} d\right )}} \]

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/3*(6*(B*a^2*b^2 - A*a*b^3)*sqrt(b*cos(d*x + c) + a)*sin(d*x + c) + (sqrt(2)*(-4*I*B*a^3*b + 2*I*A*a^2*b^2 +
 5*I*B*a*b^3 - 3*I*A*b^4)*cos(d*x + c) + sqrt(2)*(-4*I*B*a^4 + 2*I*A*a^3*b + 5*I*B*a^2*b^2 - 3*I*A*a*b^3))*sqr
t(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*s
in(d*x + c) + 2*a)/b) + (sqrt(2)*(4*I*B*a^3*b - 2*I*A*a^2*b^2 - 5*I*B*a*b^3 + 3*I*A*b^4)*cos(d*x + c) + sqrt(2
)*(4*I*B*a^4 - 2*I*A*a^3*b - 5*I*B*a^2*b^2 + 3*I*A*a*b^3))*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2
, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b) - 3*(sqrt(2)*(2*I*B*a^2*b^
2 - I*A*a*b^3 - I*B*b^4)*cos(d*x + c) + sqrt(2)*(2*I*B*a^3*b - I*A*a^2*b^2 - I*B*a*b^3))*sqrt(b)*weierstrassZe
ta(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8
*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a)/b)) - 3*(sqrt(2)*(-2*I*B*a^2*b^2 + I*A*
a*b^3 + I*B*b^4)*cos(d*x + c) + sqrt(2)*(-2*I*B*a^3*b + I*A*a^2*b^2 + I*B*a*b^3))*sqrt(b)*weierstrassZeta(4/3*
(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 -
9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b)))/((a^2*b^4 - b^6)*d*cos(d*x + c) + (a^3*b^
3 - a*b^5)*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)/(b*cos(d*x + c) + a)^(3/2), x)

Giac [F]

\[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)/(b*cos(d*x + c) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\cos \left (c+d\,x\right )\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int((cos(c + d*x)*(A + B*cos(c + d*x)))/(a + b*cos(c + d*x))^(3/2),x)

[Out]

int((cos(c + d*x)*(A + B*cos(c + d*x)))/(a + b*cos(c + d*x))^(3/2), x)